Rock Products - The Leading Voice of the Aggregate Industries.

What Makes River Rock Round?


Abrasion makes a rock roundFor centuries, geologists have recognized that the rocks that line riverbeds tend to be smaller and rounder further downstream. But these experts have not agreed on the reason these patterns exist. Abrasion causes rocks to grind down and become rounder as they are transported down the river. Does this grinding reduce the size of rocks significantly, or is it that smaller rocks are simply more easily transported downstream?

A new study by the University of Pennsylvania’s Douglas Jerolmack, working with mathematicians at Budapest University of Technology and Economics, has arrived at a resolution to this puzzle. Contrary to what many geologists have believed, the team’s model suggests that abrasion plays a key role in upholding these patterns, but it does so in a distinctive, two-phase process. First, abrasion makes a rock round. Then, only when the rock is smooth, does abrasion act to make it smaller in diameter.

“It was a rather remarkable and simple result that helps to solve an outstanding problem in geology,” Jerolmack said.

Not only does the model help explain the process of erosion and sediment travel in rivers, but it could also help geologists answer questions about a river’s history, such as how long it has flowed. Such information is particularly interesting in light of the rounded pebbles recently discovered on Mars – seemingly evidence of a lengthy history of flowing rivers on its surface.

Jerolmack, an associate professor in Penn’s Department of Earth and Environmental Science, lent a geologist’s perspective to the Hungarian research team, comprised of Gábor Domokos, András Sipos and Ákos Török.

Their work was published in the journal PLOS ONE.

Prior to this study, most geologists did not believe that abrasion could be the dominant force responsible for the gradient of rock size in rivers because experimental evidence pointed to it being too slow a process to explain observed patterns. Instead, they pointed to size-selective transport as the explanation for the pattern: small rocks being more easily transported downstream.

The Budapest University researchers, however, approached the question of how rocks become round purely as a geometrical problem, not a geological one. The mathematical model they conceived formalizes the notion, which may seem intuitive, that sharp corners and protruding parts of a rock will wear down faster than parts that protrude less.

The equation they conceived relates the erosion rate of any surface of a pebble with the curvature of the pebble. According to their model, areas of high curvature erode quickly, and areas of zero or negative curvature do not erode at all.

The math that undergirds their explanation for how pebbles become smooth is similar to the equation that explains how heat flows in a given space; both are problems of diffusion.

“Our paper explains the geometrical evolution of pebble shapes,” said Domokos, “and associated geological observations, based on an analogy with an equation that describes the variation of temperature in space and time. In our analogy, temperature corresponds to geometric (or Gaussian) curvature. The mathematical root of our paper is the pioneering work of mathematician Richard Hamilton on the Gauss curvature flow.”

From this geometric model comes the novel prediction that abrasion of rocks should occur in two phases. In the first phase, protruding areas are worn down without any change in the diameter of the pebble. In the second phase, the pebble begins to shrink.

Source: www.upenn.edu